
USE OF THE INTERNAL AND EXTERNAL STANDARD TECHNIQUES IN DETERMINATIONS OF AMINO ACIDS BY ION EXCHANGE CHROMATOGRAPHY

Bohuslav RITTICH^{a,*} and Stanislav STANDARA^b

^a *Institute of Systematic and Ecological Biology, 603 65 Brno*

^b *Research Institute of Veterinary Medicine, 621 32 Brno*

Received December 13, 1990

Accepted April 18, 1991

Influence of the internal standard technique on the precision of amino acid determination was studied. The law of propagation of errors and the information theory was applied in this paper. From the results it follows that the internal standard technique did not inevitably improve the precision of the determination. In the case of a multicomponent sample, the external standard technique improved the accuracy only if calibration curve was used.

Internal and external standard techniques are widely used in chromatography. These techniques are also used in the determination of amino acids on automatic amino acid analysers by means of ion exchange chromatography.

Generally, it is assumed that internal standard techniques improve the precision of determination. On the other hand, some critical remarks have been published about usefulness of the internal standard technique^{1,2}. Requirements for application of the internal standard technique are given in literature^{2,3}. Use of the internal standard in amino acid determinations has, in comparison to other chromatographic methods, some specificities. Only one internal standard is used for the whole amino acid spectrum (in the case of the dual column system, one internal standard for the short column and one for the long column are used). For this reason, the internal standard is not eluted near all the peaks of interest. Similarly, the peak height (or peak area) of the internal standard is not similar to all the amino acid peaks heights (peak areas).

The use of external standard technique is attractive for chromatographs with automatic sample injectors which guarantee the precision of sample injection. These chromatographs, in connection with integrators save a considerable amount of time in calculation and presentation of results. However, some critical remarks on the use of this technique in amino acids determination have been presented^{4,5}.

The aim of this study was to investigate influence of the internal standard technique use on the precision of amino acids determination. The law of propagation of errors

* Present address: The University of Veterinary Medicine, 612 42 Brno.

and the information theory were applied for these purposes. Influence of the external standard technique on the accuracy of amino acids determination was also studied.

THEORETICAL

If the internal standard technique improves the precision of a method, the following has to be hold true²

$$s_{q,\text{rel}} < s_{x,\text{rel}}, \quad (1)$$

where $s_{x,\text{rel}}$ is the relative standard deviation (the coefficient of variation) of the peak of the substance to be determined and $s_{q,\text{rel}}$ is the relative standard deviation of the quotient q_i

$$q_i = \frac{x_i}{x_I}, \quad (2)$$

where x_i is the height (area) of the peak of the substance to be determined and x_I is that of the internal standard one.

From the law of error propagation, Haefelfinger² derived the relation

$$s_{I,\text{rel}} < 2rs_{x,\text{rel}}, \quad (3)$$

where $s_{I,\text{rel}}$ is the relative standard deviation of the internal standard peak and r is the correlation coefficient for relationship x_i vs x_I . In many cases, the value of $s_{q,\text{rel}}$ is calculated directly from the values q_i . It is also possible to calculate this parameter from the equation

$$s_{q,\text{rel}} = (s_{x,\text{rel}}^2 + s_{I,\text{rel}}^2 - 2rs_{x,\text{rel}}s_{I,\text{rel}})^{1/2}. \quad (4)$$

Analysis is a process of obtaining information on the chemical composition of matter. The information content is used as the characteristics for evaluating information properties of analytical results^{6,7}.

$$I_1(p, p_0) = \log_2 \frac{x_2 - x_1}{\sigma \sqrt{2\pi e}} \quad (5a)$$

$$I_1(p, p_0) = \log_2 \frac{(x_2 - x_1) \sqrt{n}}{2st_v}, \quad (5b)$$

where x_1 and x_2 are minimum and maximum limits presumed in which content of the component to be determined is involved (%), σ is standard deviation of a random variable, s is estimation of the standard deviation, n is the number of parallel determinations, t_v is the critical value of the Student distributor for the numbers of

degrees of freedom $v = n - 1$ and at the significance level $\alpha = 0.038794$ (ref.⁶).

Chromatographic methods are two-dimensional analytical methods. Thus, from the signal position we determine which component of the analysed sample is present and from the signal intensity its amount. The amount of information is given as

$$M(p, p_0) = \sum_{i=1}^k I(p, p_0)_i, \quad (6)$$

where k is the number of all components determined simultaneously.

The accuracy of the results can be influenced by calibration. The accuracy is characterized by the difference

$$d = |\bar{x} - X|, \quad (7)$$

where d is the estimated mean error of the determination, \bar{x} is a mean of n parallel determinations, X is the true value of the component. If $d > 0$ does not differ significantly from zero, we express the information content of the results of the quantitative analysis by Eqs (5a) and (5b). On the contrary, for a significant difference, the information content is given as ref.⁶

$$I_2(p, p_0) = \log_2 \frac{(x_2 - x_1) \sqrt{n}}{2st_v} - \frac{1}{2} \left(\frac{d}{s} \right)^2. \quad (8)$$

EXPERIMENTAL

Evaluation of the effect of the use of the internal standard technique on the precision of determination of amino acids was carried out using a AAA-881 (Mikrotechna, Prague) amino acid analyzer with a dual column system. Samples were injected onto the column by manually operated sampling valve, a loop with capacity of 200- μ l being used to load 100 nmol of the amino acid. Either tryptophan (TRY) or α -amino- β -guanidin propionic acid (AGP) were used as internal standards for the short column and L-norleucine (NLEU) for the long one.

Evaluation of the effect of the used of the external standard technique on the accuracy of amino acid analysis was carried out using an AAA-T339 (Mikrotechna, Prague) amino acid analyzer with a single column system. Samples were injected onto the column by an automatically operated sampling valve a loop with a capacity of 100- μ l being used to load 25 nmol of the amino acid. The peak area was determined by means of the System I integrator (Spectra Physics, San Jose). Amino acid content in beef meat meal and *Psophocarpus tetragonolobus* (L.) DC was determined after acid hydrolysis⁷. Samples were hydrolyzed in 6M HCl in vacuum-sealed tubes at 110°C for 24 h.

The statistical calculations were carried out according to Eckschlager et al.⁸.

RESULTS AND DISCUSSION

Effect of the internal standard peak positions on precision of the amino acids determination on a short column were studied (Table I). The use of tryptophan as the internal standard did not improve the precision of the determination, as its relative

standard deviation was higher than those of the other amino acids. It was evidently caused by the dosing buffer (pH 2.2) which changed the chromatographic conditions on the top of the chromatographic column. In the second example (AGP was used as the internal standard), although $s_{x,rel}$ values were higher than for tryptophan, the use of the internal standard improved the precision of the determination. It has been found that Eq. (4) did not apply for $s_{x,rel} > 10\%$ (see arginine with AGP as the internal standard).

The effects of the internal standard on the precision of amino acids determination (long column) are given in Table II.

The correlation coefficient is within the limits $-1 < r < 1$. It is obvious that between the areas of the internal standard peak and the other amino acid peaks only positive correlations may exist ($r > 0$). But in fact, even negative values were calculated. This was caused probably by the effect of the matrix of the sample on the shape of chromatographic peaks and their area calculation. For $r < 0$ values, it is not surprising there is no improvement in the precision of the amino acids determination when internal standard is used. No conditions given by Eq. (3) are fulfilled. On the contrary, true values of the standard deviation $s_{q,rel}^c$ for $r < 0$ were calculated by using Eq. (4). This is in agreement with the results of Haefelfinger². The agreement between both $s_{q,rel}$ and $s_{q,rel}^c$ values are affected by the number of parallel determinations.

TABLE I
Precision of determination of amino acids in beef meat meal on a short column ($n = 12$)^a

Amino acid	\bar{x} a.u.	$s_{x,rel}$ %	r —	$2rs_{x,rel}$ %	\bar{q} —	$s_{q,rel}$ %	$s_{q,rel}^c$ %
Internal standard: Try							
Try	4.89	4.04 ^b	—	—	—	—	—
Lys	8.49	3.63	—0.376	—2.729	1.76	6.25	6.36
His	4.38	2.73	0.234	1.277	0.90	4.33	4.31
Arg	4.05	6.31	0.157	1.982	0.83	6.86	6.94
Internal standard : Agp							
Lys	7.85	7.53	0.548	8.248	1.31	6.40	6.38
His	3.95	8.30	0.400	6.643	0.66	7.72	7.83
Agp	6.00	5.15 ^b	—	—	—	—	—
Arg	4.14	14.88	0.253	7.528	0.70	15.31	14.46

^a All values related to peak area; ^b used as $s_{1,rel}$ values in Eq. (3).

TABLE II
Precision of determination of amino acids on a long column

Parameter	Asp	Thr	Ser	Glu	Gly	Ala	Val	Ileu	Leu	nLeu	Tyr	Phe	Amino acid	
													Standards ($n = 6$)	
\bar{x} (a.u.)	7.39	7.57	7.81	7.55	7.64	7.68	7.64	8.20	8.28	8.19	8.35	1.48		
s_x, rel (%)	4.88	3.93	2.16	3.92	4.57	4.77	0.90	1.40	1.26	2.02	1.34	1.11		
r	—	0.355	0.625	0.721	0.394	0.252	0.358	0.492	0.471	0.773	—	0.236	0.317	
$2rs_x, \text{rel}$ (%)	3.467	4.906	3.119	3.090	2.301	3.418	0.887	1.319	1.945	—	0.632	0.704		
q	—	0.90	0.92	0.95	0.92	0.93	0.94	0.93	1.00	1.01	—	1.02	1.03	
$s_{q, \text{rel}}$ (%)	3.97	2.91	1.32	3.10	4.39	3.88	2.57	1.83	1.34	—	2.56	2.18		
$s_{q, \text{rel}}^e$ (%)	3.98	3.10	1.52	3.92	5.48	4.96	2.29	1.70	1.33	—	2.60	2.11		
Beef meat meal ($n = 12$)														
\bar{x} (a.u.)	9.14	4.21	5.93	13.68	7.48	7.32	4.85	4.19	8.84	8.52	3.26	3.83		
s_x, rel (%)	6.90	6.86	7.36	3.54	4.42	4.73	7.00	3.79	4.51	2.49	4.46	4.49		
r	—	0.615	0.038	0.555	0.855	—0.842	0.235	—0.450	0.270	0.675	—	—0.423	0.087	
$2rs_x, \text{rel}$ (%)	8.488	0.685	8.174	6.049	7.446	2.226	—6.301	2.048	6.089	—	—3.770	0.782		
q	—	1.07	0.49	0.70	1.61	0.88	0.86	0.57	0.49	1.04	—	0.38	0.45	
$s_{q, \text{rel}}$ (%)	5.59	7.23	6.22	1.97	2.70	4.67	6.34	3.93	3.42	—	5.79	4.81		
$s_{q, \text{rel}}^e$ (%)	5.72	7.16	6.32	1.91	2.69	4.80	6.29	3.94	3.37	—	5.95	4.95		

From the results given in Table II it follows that in the case of using the internal standard technique, for 7 amino acids from the 11 determined, improvements of the precision were achieved. From the law of error propagation it is not possible to draw an explicit conclusion on the acceptability of the use the internal standard technique for the whole tested set.

For this purpose, the values $x_1 = 0$, $x_2 = 14$ a.u. and with quotients $q_1 = 0$, $q_2 = 1.75$ for the calculation of information content $I(p, p_0)$ were applied (Tables III and IV). Information content depends not only on the value of the standard deviation s but also on the number of parallel determinations n . The following two cases considered:

- a) standard deviation is computed from the all parallel determinations;
- b) less parallel determinations are carried out than the number of those from which s was determined in another series. In this paper, both methods for $I(p, p_0)$ calculation were used (Table III). For interpretation of the results it is necessary to determine the least information content at which resolution of chromatographic peaks is possible using the given method. It is given by the ratio $(x_2 - x_1)/s$ and must always hold $x_2 - x_1 > 6s$, since for intervals $\langle x_1, x_2 \rangle$ narrower than $6s$ Eq. (5) is not applicable. Under the above mentioned condition, the following values of

TABLE III
Information content (in bit) of determination of amino acids in beef meat meal on a short column ($n = 12$)

Amino acid	$I_1(p, p_0)_x^a$	$I_1(p, p_0)_q^a$	D^a	$I_1(p, p_0)_x^b$	$I_1(p, p_0)_q^b$	D^b
Internal standard: Try						
Try	5.712	—	—	4.420	—	—
Lys	5.070	3.177	1.893	3.778	1.885	1.893
His	6.436	5.059	1.377	5.144	3.767	1.377
Arg	5.341	4.510	0.831	4.049	2.218	0.831
$M(p, p_0)$	16.847	12.746	—	12.971	8.870	—
Internal standard: Agp						
Lys	4.132	3.951	0.181	2.840	2.658	0.181
His	4.979	4.668	0.311	3.687	3.376	0.311
Agp	5.068	—	—	3.775	—	—
Arg	4.071	3.595	0.476	2.779	2.302	0.476
$M(p, p_0)$	13.182	12.214	—	9.306	8.336	—

^a Calculated for $n = 12$; ^b calculated for $n = 2$ (the standard deviation was estimated for $n = 12$).

TABLE IV
Information content (in bit) of determination of amino acids on a long column

Asp	Thr	Ser	Glu	Gly	Ala	Val	iLeu	Leu	nLeu	Tyr	Phe	Amino acid		$M(p, p_0)$ bit
												Standards ($n = 6$)		
$I_1(p, p_0)_x$	4.646	4.734	5.582	4.925	4.505	4.432	6.841	6.112	6.238	5.362	5.966	6.475	60.456	
$I_1(p, p_0)_q$	4.749	5.128	5.943	5.012	4.531	4.545	5.190	5.544	5.923	—	5.278	5.416	57.259	
D	-0.013	-0.394	-0.361	-0.087	-0.026	-0.113	1.651	0.569	0.314	—	0.688	1.059	—	
Beef meat meal ($n = 12$)														
$I_1(p, p_0)_x$	4.037	5.165	4.568	4.411	4.967	4.004	4.931	6.025	4.699	5.608	6.157	5.912	55.776	
$I_1(p, p_0)_q$	4.436	5.180	4.902	5.356	5.772	5.013	5.166	6.067	5.189	—	5.871	5.904	58.856	
D	0.399	0.015	0.334	0.945	0.805	0.109	0.235	0.042	0.490	—	-0.286	-0.008	—	

minimal information content were calculated: for $n = 2 I(p, p_0) = 1.038$ bits; $n = 6 I(p, p_0) = 1.648$ bits; $n = 12 I(p, p_0) = 2.331$ bits. Only for lysin and histidine (Table III, with TRY as internal standard) were differences $D = I(p, p_0)_x - I(p, p_0)_q$ higher than the minimal information content for $n = 2$. From this point of view it is possible to evaluate the use of the interval standard technique as insignificant.

Further, the influence of the external standard technique on the accuracy of amino acids determination was studied. It is well known that the highest accuracy of results is obtained if the peak area (height) of the standard and the compounds determined are the same. The proportion of the amino acid peaks depends on the type of analyzed material. For this reason each type of material should have its own external standard. It is difficult to meet this requirement in practice. Hence, for different dilutions of the sample various amino acid contents were calculated (Table IV). It is suitable to use a calibration curve for each component to estimate its content. The advantage of the calibration curve is the possibility to use it for non-linear dependences, too. On the other hand, this way of calculation is more time consuming in comparison to the external standard technique.

The values $x_1 = 0$ and $x_2 = 50$ g/kg were used for the calculation of the information content in Table V. Due to poor knowledge of the true amino acids content

TABLE V
Information content of determination of amino acids in *Psophocarpus tetragonolobus* (L.) DC using the external standard technique

Amino acid	\bar{x}^a g/kg	$I(p, p_0)^a$ bit	\bar{x}^b g/kg	$I(p, p_0)^b$ bit	\bar{x}^c g/kg	$I(p, p_0)^c$ bit
Asp	43.5	0.033	43.2	0.306	37.5	2.458
Thr	15.9	4.211	15.3	4.600	15.4	4.604
Ser	21.2	-0.402	20.2	3.097	19.0	4.412
Gly	17.6	-21.086	16.3	3.266	15.7	5.813
Ala	16.7	2.480	15.2	4.690	15.5	4.742
Val	19.7	-314.896	17.3	5.979	17.5	7.412
iLeu	16.6	-1.312	15.4	5.402	15.3	5.412
Leu	33.7	-8.952	32.2	4.925	31.8	5.412
Tyr	18.9	-5.480	18.1	-2.774	18.5	7.412
Phe	18.0	-3.625	17.7	4.014	17.1	5.090
His	11.0	4.980	10.8	2.433	11.3	6.412
Lys	28.3	4.776	25.7	-11.310	27.7	5.412
Arg	26.7	2.773	25.0	3.598	25.1	3.605
$M(p, p_0)$	-	-336.500	-	28.226	-	68.196

^a Dilution 1 : 250; ^b dilution 1 : 500; ^c calculated from calibration curve.

in the sample, values calculated from a calibration curve were used as X in Eq. (7). It is apparent that the information content of results decreases with the increasing value of d . This fact is also manifested in the amount of information $M(p, p_0)$ values.

In conclusion, it may be remarked that the internal standard technique will not improve the precision of a determination in many cases. In the case of a multi-component sample the external standard technique will improve the accuracy only if a calibration curve is used.

REFERENCES

1. Curry S. H., Whelpton R. in: *Blood Drugs and Other Analytical Challenges* (E. Reid, Ed.), p. 29. Ellis Harwood, Chichester 1978.
2. Haefelfinger P.: *J. Chromatogr.* **218**, 73 (1981).
3. Novák J.: *Quantitative Analysis by Gas Chromatography*, 2nd ed., p. 85. Dekker, New York 1988.
4. James L. B.: *J. Chromatogr.* **404**, 321 (1987).
5. Harduf Z.: *J. Chromatogr.* **404**, 326 (1987).
6. Eckschlager K., Štěpánek V.: *Information Theory as Applied to Chemical Analysis*, p. 111. Wiley, New York 1979.
7. Eckschlager K., Horská I., Kodejš Z.: *Vyhodnocování analytických výsledků a metod*. p. 24, 103. SNTL, Prague 1980.
8. Moore S., Stein S. H.: *Methods Enzymol.* **48**, 819 (1963).

Translation revised by H. P. Mašková.

SYMBOLS

D	difference of $I(p, p_0)_x - I(p, p_0)_q$
d	estimate of the mean error of the determination (Eq. (7))
$I(p, p_0)$	information content (Eqs (5a) and (5b))
$M(p, p_0)$	amount of information (Eq. (6))
n	number of parallel determinations
q	ratio of peak heights or areas (Eq. (2))
\bar{q}	mean of peak heights or areas
r	correlation coefficient (for relationship x_i vs x_j)
s	estimate of the standard deviation
t_v	percentage value of the Student distribution for $\alpha = 0.038794$ and $v = n - 1$ degrees of freedom
X	true content of the component in an analyzed sample
x	value of the result of analysis
\bar{x}	mean of parallel determinations
a.u.	arbitrary units
α	probability of a type I error (the significance level)
σ	standard deviation of a random variable

Subscripts

I	internal standard
i	index of the component
q, x	concerning to symbols q, x
rel	relative
v	number of degrees of freedom

Superscript

c	calculated according to Eq. (4)
---	---------------------------------